
June 1, 2009 / Vol. 34, No. 11 / OPTICS LETTERS 1675
Solar-blind deep-ultraviolet photodetectors
based on an LaAlO3 single crystal
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Solar-blind deep-ultraviolet (DUV) photoconductive detectors based on an LaAlO3 (LAO) single crystal with
interdigitated electrodes are reported. The LAO detectors show a high sensitivity to DUV light with wave-
lengths less than 210 nm, and the DUV/UV (200 versus 290 nm) contrast ratio is more than 2 orders of
magnitude. The photocurrent responsivity of LAO detector reaches 71.8 mA/W at 200 nm at 10 V bias, and
the corresponding quantum efficiency � is 44.6%. The noise current under sunlight at midday outdoors is
only 77 pA. The experimental results indicate that the LAO detectors have attractive potential applications
in DUV detection. © 2009 Optical Society of America
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Solar-blind deep-ultraviolet (DUV) photodetectors
with excellent thermal stability and reliability have
attracted a strong interest owing to their broad po-
tential applications in the fields of automatization,
short-range communications security, biological re-
searches, and military services. In particular, solar-
blind DUV detectors can work in a harsh environ-
ment of sunlight radiation. DUV photodetectors
fabricated from various wide-bandgap materials,
such as cBN [1], AlxGa1−xN [2], diamond [3], and
II–IV compounds [4], have been reported. However,
the fabrication processes for the DUV photodetectors
mentioned above are complex and costly.

Perovskite oxides have drawn much attention dur-
ing the past decades for their abundant properties,
such as dielectric, piezoelectric, ferroelectric, ferro-
magnetic, superconducting, and optical characteris-
tics. Photoelectric effect, as one of the most important
properties, has been studied by several research
groups [5–13]. LaAlO3 (LAO), one of the perovskite
oxide materials, is an insulator with a bandgap of
�5.6 eV [14]. It has a very good chemical and ther-
mal stability and often has been chosen as a sub-
strate or buffer layer for growing high-temperature
superconductors. In addition, LAO has been paid
much attention as a promising alternative gate-
dielectric material [15]. UV photoelectric effects in
tilted LAO single crystal and amorphous
LaAlO2.73/Si heterostructure have been reported in
our previous work [16,17]. However, as far as we
know, solar-blind DUV photodetectors based on an
LAO single crystal has not yet been reported. In this
Letter, we will report on solar-blind DUV photodetec-
tors based on an LAO single crystal with interdigi-
tated electrodes. The photocurrent response reaches
71.8 mA/W at 200 nm, and the noise current under
sunlight is 77 pA at 20 V bias at ambient tempera-
ture.

The LAO single crystal used in the present study is
the as-supplied LAO (001) substrates with purity of

99.99% and a mirror double polished. The size of the
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LAO wafer is 5�10 mm2 with a thickness of 0.5 mm.
Figure 1 shows the schematic of a typical LAO pho-
todetector. An Au layer with 100 nm thickness was
deposited onto one surface of the LAO wafer by
electron-gun evaporation. Conventional UV lithogra-
phy and etching were performed to fabricate Au in-
terdigitated electrodes. The effective area of the pho-
todetector is 2�6 mm2. The finger width w of the
electrodes is equal to the separated spacing s. The
ranges of w and s are from 5 to 50 �m for different
detectors. Owing to the shadowing effect of elec-
trodes, the active area (the area directly exposed to
radiation) is 2 mm2.

A 30 W D2 lamp was employed to act as a light
source, and the light intensity was calibrated by a
UV-enhanced silicon photodetector in the wavelength
range of 200–400 nm. The photoelectric signal was
recorded by a 500 MHz digital oscilloscope with a
sampling resistance of 1 M�. The spectral responsiv-
ity was measured using a monochromator combined
with an optical chopper and a lock-in amplifier.

Figure 2 shows the steady-state photocurrent of an

Fig. 1. (Color online) Schematic diagram of the LaAlO3
photodetector with interdigitated electrodes; w is the finger
width and s is the interspacing of the interdigitated

electrodes.
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LAO detector with a finger width of 5 �m under irra-
diation of the D2 lamp. The schematic of the mea-
surement circuit is shown in the inset of Fig. 2. The
bias VB is a tunable dc voltage source. The LAO de-
tector is in series with a sampling resistance R. A
change in voltage developed across R was recorded by
the oscilloscope. The photocurrent in the bias circuit
can be calculated by the voltage divided by the sam-
pling resistance. As shown in Fig. 2, the photocurrent
was high (low) when the D2 lamp was on (off). The
photocurrent was 0.977 �A at 10 V bias. The mecha-
nism of photocurrent response of the LAO detector to
the illumination of the D2 lamp is not difficult to un-
derstand. Because the photon energies, correspond-
ing to the wavelengths less than 210 nm from the D2
lamp, are higher than the bandgap of LAO, the LAO
single crystal absorbed the incident photons and gen-
erated electron-hole pairs. The photogenerated elec-
trons and holes were separated by the electric field of
supplied bias and then formed photocurrent.

Figure 3(a) shows the bias dependence of the pho-
tocurrent for different LAO detectors with finger
widths of 5, 10, and 20 �m. We can find that the pho-
tocurrent increased linearly with bias for all the LAO
detectors with different w and s. Figure 3(b) illus-
trates the variation of photocurrent of the LAO detec-
tors as a function of the finger width and spacing at
different biases. It can be seen that the reduction of
finger width w and interspacing s largely enhanced
the photoelectric responsivity of LAO detectors, since
the recombination of photogenerated carriers was re-
duced and more carriers can be collected for the de-
tector with narrower finger width and interspacing.
After carefully fitting the experimental data, we got a
relationship of photocurrent �w−2 [solid curves in
Fig. 3(b)], which agrees well with the theory of pho-
toconductive detectors [18,19].

Figure 4 shows the spectral response of the LAO
detector with 5 �m finger width at 10 V bias at am-
bient temperature. The LAO detector shows a high
sensitivity to DUV light with a wavelength less than

Fig. 2. (Color online) The steady-state photocurrent of the
LaAlO3 photodetector with 5 �m finger width under illumi-
nation of the D2 lamp at 10 V bias. The inset shows the
schematic of measurement circuit.
210 nm. The photocurrent responsivity reaches
71.8 mA/W at the wavelength of 200 nm. The quan-
tum efficiency is 44.6%, according to the formula �
=Rih� /q, where Ri is the photocurrent responsivity of
the photodetectors, h is the Planck constant, � is the
frequency of incident light, and q is the charge of one
electron. The sharp cutoff wavelength of the spec-
trum is at 220 nm, which corresponds to a photon en-
ergy of 5.6 eV, agreeing well with the LAO bandgap
and demonstrating a bandgap excitation process. The
DUV/UV (200 versus 290 nm) contrast ratio is more
than 2 orders of magnitude, indicating that the LAO
detector has an intrinsic solar blindness. The inset in
Fig. 4 shows the dependence of photocurrent of LAO
detector with 5 �m finger width on the incident light

Fig. 3. (Color online) (a) Bias dependence of the photocur-
rent for LaAlO3 detectors with different finger width. (b)
Variation of the photocurrent as a function of the finger
width at different biases.

Fig. 4. Spectral response of the LaAlO3 detector with a
finger width of 5 �m at 10 V bias. The inset is the photo-
current variation with the incident light intensity of the D2

lamp.
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intensity of the D2 lamp at 10 V bias. The photocur-
rent has a good linear relationship with the light
power density.

Furthermore, we measured the dark current and
the noise current directly under the illumination of
sunlight at midday outdoors using a Keithley Model
2182 nanovoltmeter. As shown in Fig. 5, the noise
current of the LAO detector with 5 �m finger width
under sunlight is 77 pA, and the dark current is
25 pA at 20 V bias, which suggest that the LAO de-
tector can directly detect DUV light without any fil-
ters to block the sunlight.

In conclusion, we have successfully fabricated
solar-blind DUV photodetectors based on an LAO
single crystal with interdigitated electrodes. The de-
tectors show a high sensitivity to DUV light and a
high signal-to-noise ratio. The spectral response has
a sharp cutoff wavelength at 220 nm, with an obvious
rejection ratio (200 versus 290 nm) more than 2 or-
ders of magnitude. The photocurrent responsivity is
71.8 mA/W at 200 nm, and the corresponding quan-
tum efficiency reaches 44.6%. In particular, the noise
current under sunlight is only 77 pA at 20 V bias. In
addition, the present DUV detectors are based on a
commercial LAO single crystal and do not need a
complex fabrication process. The excellent character-
istics of LAO detectors demonstrate its potential and
attractive applications in DUV detection.

Fig. 5. (Color online) Bias dependence of the current of the
LaAlO3 detector with a finger width of 5 �m measured in
the dark and under the irradiation of sunlight at midday.
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