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The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in
the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the
graphene–superconductor (G=S) interface give rise to the charge neutral states in all Landau levels. We note that in a
topological insulator–superconductor (TI=S) hybrid structure, only N = 0 Landau level can support this type of charge
neutral states. The different interface states of a G=S hybrid and a TI=S hybrid is due to that graphene consists of two
distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties
of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is
that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the
current density in the superconductor region. The interface current density can also be tuned with a finite interface
potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found
that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the
strength of the interface potential.

1. Introduction

A graphene–superconductor (G=S) hybrid structure can
exhibit interesting physics not seen in any other systems, e.g.,
the specular Andreev reflection (SAR).1,2) Prior to the
discovery of graphene, only the Andreev retro-reflection
can occur in a normal metal–superconductor (N=S) inter-
face.3,4) SAR provides a basis to experimental investigations
of the proximity effect and supercurrent flow in G=S system.
So far, most theoretical analysis on the G=S hybrid structure
are carried out in absence of a magnetic field.5–8) The edge
states and distribution of edge currents in semi-infinite
graphene under strong magnetic field provide a direct
evidence of the connection between the edge states and
topological properties of relativistic fermions.9) Under a
magnetic field smaller than the critical field of super-
conductor, but still large enough, the energy levels of the
bulk states are quantized10,11) and the edge states sprawl out
at the interface. Under the magnetic field B, the unusual
Landau levels (LLs) of graphene have a square-root
dependence on both magnetic field and level index
EN ¼ sgnðNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eħv2FjNjB

p
, where N is any integer.12) Gen-

erally, the strong magnetic field makes the energy spacing
between adjacent LLs larger than (or of the same order of)
the typical superconducting pair potential (�0 ≲ 1meV). As
a consequence, the magnetic field is expected to affect the
Andreev reflection (AR) in G=S junction. Akhmerov and
Beenakker propose a method to detect the valley polarization
of quantum Hall edge states, using a superconducting contact
as a probe.13,14) In their work the edges are assumed to be
smooth on the scale of a magnetic length, lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ=jeBj

p
, so

that they may be treated locally as a straight line with a
homogeneous boundary condition. For a G=S junction under
a strong magnetic field, edge states are formed due to the
confinement introduced by both the external magnetic field
and the superconducting pair potential. These edge states

produce the Hall current in the direction parallel to the
interface. Physically, these edge states are a coherent
superposition of electron and hole-like edge excitations
similar to those realized in finite pn-junction quantum-Hall
samples.14,15)

In this paper, we will demonstrate that the interplay of the
AR and skipping cyclotron orbits at the G=S interface gives
rise to the charge neutral quasiparticles. Such a charge neutral
state in a topological insulator–superconductor (TI=S) hybrid
is a topic of intensive current research. Probing zero-modes
using charge transport16) and using quantum Hall edge
states17) have been established. Recently chiral edge states
with neutral fermions has been observed in synthetic Hall
ribbons.18) We show a theoretical evidence that the charge
neutral states do exist. Furthermore, in a TI=S hybrid, the
charge neutral quasiparticles only exist in the N ¼ 0 Landau
level.19) In the present G=S hybrid structure, the charge
neutral quasiparticles can also exist in the high LLs, which
significantly enhances the probability of experimentally
observing the states. Our analysis is based on a hybrid where
graphene has an armchair edge at the boundary, as shown in
Fig. 1. The hybrid with a zigzag boundary can be analyzed
with the same method upon a suitable transformation.

Fig. 1. (Color online) Schematic experimental setup with an armchair
boundary.
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The paper is organized as follows. In Sect. 2, we discuss
the Hamiltonian and formulate the boundary conditions for
the G=S hybrid. In Sect. 3 we analyse the wave-number-
dependent excitation spectra and the effective charges of
Landau levels. Section 4 is devoted to the analysis of edge
current and Sect. 5 is a brief summary.

2. Hamiltonian and Boundary Conditions

The G=S hybrid with a contact in an armchair configuration
is illustrated in Fig. 1, where a uniform magnetic field is
applied in the direction perpendicular to the plane. We
consider a type-I superconductor in our study so that the
magnetic field is absent in the superconductor due to the
Meissner effect. For simplicity, we also neglect the effect of
magnetic penetration to the superconductor and the inhomo-
geneity of the magnetic field in the vicinity of the interface.
The magnetic field is, then, expressed approximately in form of
BðxÞ ¼ B�ð�xÞ, where �ðxÞ is the Heaviside’s step function.

For honeycomb hexagon lattice with two valley degrees of
freedom (K and K0) in the reciprocal space, the Hamiltonian
of the system is given as

bH ¼
bh � EF � � I4
�� � I4 EF � TbhT �1

 !
; ð1Þ

and the states are described by Dirac–Bogoliubov–de Gennes
(DBdG) equation1,20) bH� ¼ E�; ð2Þ
where

bh ¼
bhK 0

0 bhK0

 !
þ UðxÞ þbVðxÞ ð3Þ

is the Dirac Hamiltonian in a form of 4 � 4 matrix acting on
two inequivalent sublattices and two valley degrees of
freedom K and K0, respectively; I4 is a four-dimensional
identity matrix; Δ is the superconductor pair potential �ðrÞ ¼
�0e

i��ðxÞ with �0 the excitation gap and ϕ is the phase of

�ðrÞ in the superconductor; T is the time-reversal operator; U
is the potential UðxÞ ¼ UG�ð�xÞ þ US�ðxÞ which is used to
control the difference of Fermi energies in the two regions;bVðxÞ ¼ bV�ðxÞ is a 4 � 4 matrix for the interface potential
which describes the barrier effect of an interval insulator layer
between the graphene and superconductor.

The two inequivalent Dirac cones are given as K ¼
ð4�=ð3

ffiffiffi
3

p
aÞ; 0Þ and K0 ¼ ð�4�=ð3

ffiffiffi
3

p
aÞ; 0Þ, where a is the

distance between neighbouring carbon atoms. For the contact
of G=S in the armchair configuration, both inequivalent
sublattices are on the interface. The wavefunction of DBdG
equation can be written in the form

�A ¼ eiKRA AK þ eiK
0RA AK0 ; ð4Þ

�B ¼ eiKRB BK þ eiK
0RB BK0 ; ð5Þ

where  ðA=BÞðK=K0Þ are the components of the spinor
 ¼ ðu; vÞT, in which u and v ¼ Tu represent electron and
hole excitations, respectively. The HamiltonianbhK andbhK0 in
the vicinity of K and K0 points can be derived based on the
nearest-neighbor tight-binding model with the k � p method
or with the effective-mass approximation.21,22) Near the Dirac
cones, bhK and bhK0 are found as

bhK ¼ vFð�x�x þ �y�yÞ ¼ vF
0 �x � i�y

�x þ i�y 0

 !
ð6Þ

and bhK0 ¼ vFð��x�x þ �y�yÞ

¼ vF
0 ��x � i�y

��x þ i�y 0

 !
; ð7Þ

where � ¼ p þ eA and vF ¼ vGF�ð�xÞ þ vSF�ðxÞ, vDF and vSF
are the Fermi velocities in the graphene and superconductor.
The time reversal operator in Eq. (1) takes the form T ¼
ð 0 I2�2
I2�2 0

ÞC ¼ T �1 with C the operator of complex conjuga-
tion. According to the Hamiltonian, the wave function can be
written as,

� ¼  ðeÞ
AK;  ðeÞ

BK;  ðeÞ
AK0 ;  ðeÞ

BK0 ;  ðhÞ
AK0 ;  ðhÞ

BK0 ;  ðhÞ
AK;  ðhÞ

BK

� �T
;

where T stands for transpose. Because both inequivalent
sublattices are on the interface for the armchair configuration,
the interface potential is presented by delta potentials
VAKðrÞ ¼ V0�ðx ¼ 0Þ, VBKðrÞ ¼ V0�ðx ¼ 0Þ, VAK0 ðrÞ ¼
V0�ðx ¼ 0Þ, and VBK0 ðrÞ ¼ V0�ðx ¼ 0Þ for the atoms at A
and B sublattices. Employing the wavefunctions given in
Eqs. (4) and (5), the interfance potential in the basis
 ðeÞ
A=B;K=K0 ,  ðhÞ

A=B;K=K0 is given as

V̂ ¼ V0

I2�2 I2�2

I2�2 I2�2

 !
: ð8Þ

For convenient calculations, we introduce an unitary
transformation,

� ¼
�4�4 0

0 �4�4

 !
ð9Þ

with

�4�4 ¼
I2�2 0

0 �z

 !
: ð10Þ

Under this unitary transformation, the Hamiltonian in Eq. (1)
becomes,

cH0 ¼ �bH�y ¼
bh0 � EF � � I4
�� � I4 EF � T 0bh0T 0�1

 !
; ð11Þ

where

bh0 ¼ bh0K 0

0 bh0K0

 !
þUðxÞ þ bV0ðxÞ ð12Þ

and

bV0 ¼ �4�4bV�y
4�4 ¼ V0

I2�2 �z

�z I2�2

 !
ð13Þ

with bh0K ¼ vFð�x�x þ �y�yÞ; ð14Þbh0K0 ¼ vFð�x�x � �y�yÞ: ð15Þ

Here we notice that T 0bV0T 0�1 ¼ bV0. Correspondingly, the
wavefunction is given by e� ¼ �4�4�, i.e.,
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e� ¼  ðeÞ
AK;  ðeÞ

BK;  ðeÞ
AK0 ; � ðeÞ

BK0 ;  ðhÞ
AK0 ;  ðhÞ

BK0 ;  ðhÞ
AK; � ðhÞ

BK

� �T
:

In the spinor representation  ¼ ðu; vÞT, it corresponds to a transformed forme� ¼ euAK; euBK; euAK0 ; euBK0 ; evAK0 ; evBK0 ; evAK; evBK� �T
:

To obtain the boundary conditions for the electron and
hole excitations, we integrate DBdG equation cross over the
interface. Due to the features of a delta-type of interface
potential and first order differential equation of DBdG, the
wavefunctions are discontinuous crossing the interface
between the graphene and superconductor. Consequently,
the particle-like and hole-like components require to satisfy
following boundary conditionseuAKð0þÞ þeuAK0 ð0þÞ ¼euAKð0�Þ þeuAK0 ð0�Þ;evAKð0þÞ þevAK0 ð0þÞ ¼evAKð0�Þ þevAK0 ð0�Þ;euBKð0þÞ �euBK0 ð0þÞ ¼euBKð0�Þ �euBK0 ð0�Þ;evBKð0þÞ �evBK0 ð0þÞ ¼evBKð0�Þ �evBK0 ð0�Þ;euAKð0þÞ �euAKð0�Þ ¼ �ieV0½euBKð0Þ �euBK0 ð0Þ�;evAK0 ð0þÞ �evAK0 ð0�Þ ¼ �ieV0½�evBKð0Þ þevBK0 ð0Þ�;euBKð0þÞ �euBKð0�Þ ¼ �ieV0½euAKð0Þ þeuAK0 ð0Þ�;evBK0 ð0þÞ �evBK0 ð0�Þ ¼ �ieV0½evAKð0Þ þevAK0 ð0Þ�; ð16Þ

where eV0 ¼ V0=2ħððvGF Þ�1 þ ðvSFÞ�1Þ. This implies that the
boundary conditions manifest a linear combination of states
from two valleys in the armchair configuration. This stems
from that fact that both inequivalent sublattices appear at the
interface. For simplify, we will omit the wavy line above the
wavefunction from now on.

3. Energy Spectra and Effective Charges

3.1 Wavefunctions in the graphene and superconductor
regions

The eigenstates in graphene and superconductor can be
obtained by solving the DBdG equations in these two regions
separately. We assume that the excitation gap is real and
isotropic, �ðrÞ ¼ �0�ðxÞ, in both the sublattice and the valley
degrees of freedom. In addition, the energies of charge
carriers in graphene is restricted in a window jEj � �0, so
that electron and hole excitations with jEj � �0 are confined
on the graphene side in a width of a magnetic length lB in the
vicinity of interface by the magnetic field. For a magnetic
field perpendicular to the graphene sheet, B ¼ ð0; 0; BÞ, the
vector potential is given as A ¼ ð0; Bx; 0Þ�ð�xÞ.

The eigenvalues of the DBdG equation in the region of a
graphene (x < 0) are found as En;�� ¼ ��

ffiffiffiffiffiffi
2n

p
þ ð�1Þ�EF,

where n is any positive integer, � ¼ 1; 2 indicate the
electrons and holes, respectively, and �� ¼ �1 represent
the solutions for the conduction band and the valence band.
Based on the eigenstates the wavefunction for the energy E
(i.e., z) and the wavevector ky in the graphene side can be
written as

�G�
	;
ðx; y; ky; z
Þ ¼

1ffiffiffiffiffi
Ly

p eikyy�G�
	;
ðx; ky; z
Þ ð17Þ

with

�G�
þ;þðx; ky; zþÞ ¼ i

ffiffiffiffiffi
zþ

p
Dzþ�1ð�

ffiffiffi
2

p
ðx þ kyÞÞ; Dzþð�

ffiffiffi
2

p
ðx þ kyÞÞ; 0; 0; 0; 0; 0; 0

� �T
;

�G�
�;þðx; ky; zþÞ ¼ 0; 0; Dzþð�

ffiffiffi
2

p
ðx þ kyÞÞ; i

ffiffi
z

p
Dzþ�1ð�

ffiffiffi
2

p
ðx þ kyÞÞ; 0; 0; 0; 0

� �T
;

�G�
�;�ðx; ky; z�Þ ¼ 0; 0; 0; 0; Dz�ð�

ffiffiffi
2

p
ðx � kyÞÞ; �i ffiffiffiffiffi

z�
p

Dz��1ð�
ffiffiffi
2

p
ðx � kyÞÞ; 0; 0

� �T
;

�G�
þ;�ðx; ky; z�Þ ¼ 0; 0; 0; 0; 0; 0; �i ffiffiffiffiffi

z�
p

Dz��1ð�
ffiffiffi
2

p
ðx � kyÞÞ; Dz�ð�

ffiffiffi
2

p
ðx � kyÞÞ

� �T
; ð18Þ

where z
 ¼ ðE þ 
EFÞ2=2 is parameter to be obtained self-consistently from the boundary conditions, and DzðxÞ is a parabolic
cylinder function. � ¼ �1 for the pseudospin A (+) and B (−) subspaces, 	 ¼ �1 for the K (+) and K0 (−) valleys, and 
 ¼ �1
for electrons (+) and holes (−), respectively. Here, we use the unit where the length is scaled by lB and the energy is scaled by
E0 ¼ ħvGF =lB, respectively. We also define the guiding-center coordinates Xky ¼ �kyl2B and �Xky for the cyclotron motion of
electrons and holes in the normal region.

In the same way, the eigenvalues of the DBdG equation in the superconductor side are found as E�� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½U0 þ EF þ �ðvSF=vGF Þk�2 þ�2

0

p
, where � ¼ �1 for the electron and hole bands, respectively, � ¼ �1 and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

p
.

The wavefunction for the energy E and the wavevector ky in the superconductor side can be written as,

�S�
	;
ðx; y; ky; EÞ ¼

1ffiffiffiffiffi
Ly

p e�ik
ð
Þ
x xþikyy�S�

	;
ðky; EÞ; ð19Þ

with

�S�
þ;
ðky; EÞ ¼ exp i

� þ 
�

2

� �
�kð
Þx � iky

k

exp i

� þ 
�

2

� �
; 0; 0; exp �i� þ 
�

2

� �
�kð
Þx � iky

k

; exp �i� þ 
�

2

� �
; 0; 0

� �T

;

�S�
�;
ðky; EÞ ¼ 0; 0; exp i

� þ 
�

2

� �
�kð
Þx þ iky

k

exp i

� þ 
�

2

� �
; 0; 0; exp �i� þ 
�

2

� �
�kð
Þx þ iky

k

; exp �i� þ 
�

2

� �� �T

; ð20Þ

where the meaning of κ and λ are defined as those for the graphene, � ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0=EÞ2 � 1

p
. kð
Þx ¼ 
k0 þ ik00 with

k0 ¼ sign½U0 þ EF�ðvGF =vSFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjU0 þ EFjÞð� þ 	Þ

p
, k00 ¼ ðvGF =vSFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjU0 þ EFjÞð	 � �Þ

p
, � ¼ ½ðU0 þ EFÞ2 ��2

0 þ E2 �
ðvSF=vGF Þ2k2y�=½2jU0 þ EFj�, and 	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 � E2 þ �2
p

.
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Using �G�
	;
ðx; y; ky; EÞ and �S�

	;
ðx; y; ky; EÞ, the wavefunc-
tions in the graphene and superconductor regions can
then be expressed in the form �Nðx; y; ky; EÞ ¼P

	;
;� c
�
	;
�

G�
	;
ðx; y; ky; EÞ and �Sðx; y; ky; EÞ ¼P

	;
;� d
�
	;
�

S�
	;
ðx; y; ky; EÞ, respectively. The coefficients c�	;


and d�	;
 can be determined by the boundary conditions. For
�G�
	;
 those with � ¼ þ1 are divergent when x ! �1, so

cþ	;
 ¼ 0. Similarly, d�	;
 ¼ 0. In general, the boundary
conditions yield an homogeneous linearity equation of c�	;

and d�	;
. We can found the energy spectrum from the
condition for existing nonzero solution. The remaining
coefficient (for example c�þ;þ) can be decided by the
normalization condition

Rþ1
�1

R
Ly
dx�yðx; yÞ�ðx; yÞ ¼ 1, i.e.,

1 ¼
X

	¼�;
¼�
jc�	;
j2

Z 0

�1
dxfD2

z

ð�

ffiffiffi
2

p
ðx þ 
kyÞÞ

þ z
D
2
z
�1ð�

ffiffiffi
2

p
ðx þ 
kyÞÞg

þ
X
	¼�

ðjdþ	;þj2 þ jdþ	;�j2Þ
1

k00
kþx � 	iky

kþ

���� ����2 þ 1

 !

þ 2
X
	¼�

Re
�
idþ�	þd

þ
	�

E

�0k�x

� kþx � i	ky
kþ

� ��
k�x � i	ky

k�
þ 1

	 
�
: ð21Þ

After performing these procedures, we can obtain the energy
spectrum and wavefunctions for whole region.

3.2 Xky -dependence of energy spectrum ENðXkyÞ
By including a delta-function potential of strength V0 at

the interface, the contact of graphene and superconductor
can be regarded as a metallic contact for V0 ¼ 0 and a
tunneling junction for a finite value of V0. The Xky -
dependence of ENðXkyÞ manifests the existence of edge
states. The dispersion of edge states is sensitive to both the
Fermi energy EF and the strength of the interface potential
V0.

In this work our purpose is to demonstrate that for a
strongly coupled G=S system, charge neutral Fermionic states
can exist in all LLs. The necessary conditions for strong G=S
coupling and charge neutral states in high LLs are a near zero
Fermi energy and a small superconductor pair potential. For
typical s-wave superconductors, the pair potential is very
small �0=E0 	 1. There is a significant difference between
the energy spectra for large �0 and small �0. We first
examine the spectra with a large (unrealistic) �0=E0 
 1.
This situation was previously studied in Ref. 13. The inset of
Fig. 2 shows the energy spectra for �0=E0 ¼ 10 under two
different interface potentials, V0 ¼ 0 and V0 ¼ 10000 (all
energies are in unit of E0). For V0 ¼ 0, there is a valley
degeneracy. The left side is for the electron-like particles
while right side is for the hole-like particles. For non-zero
interface potential V0 ¼ 10000 the valley degenerate is lifted
and energy levels are split in the region of the intermediate
values of Xky . In general, the splitting enlarges as the V0

increases. The AR induced mixing between electron- and
hole-like levels becomes weaker with V0 increasing, or the
normal reflection turns to stronger. For larger jXky j these
levels trend to the same asymptotic degenerate levels. So the
delta potential strength V0 could tune the proportion of the

AR at the boundary. The Xky -dependent energy spectrum has
the symmetry ENðXkyÞ ¼ �E�Nð�XkyÞ.

The interplay of cyclotron motion in the graphene region
and the AR from the interface with the superconductor region
results in the formation of chiral Dirac–Andreev edge states
with guiding-center-dependent electric charge19) for jEj <
�0. These solutions can be described as interface states in the
sense that they are localized electron states in the direction
perpendicular to the interface and propagate along the
interfaces, in analogy to the edge states of a semi-infinite
graphene in a magnetic field. In contrast with conventional
edge states, the V0 ¼ 0 interface does not cause splitting of
the dispersion. This is a consequence that at the G=S interface
with V0 ¼ 0, the wave function is finite and continuous
and the associated probability density can be finite in the
superconductor region.

We found that for a small (more realistic) Δ and EF ¼ 0

(for AR to dominate) G=S coupling becomes very strong and
qualitatively alters the energy dispersion. Figure 2 shows the
clear and convincing evidence of the G=S coupling of the
hybrid. For EF ¼ 0 the reflection is in the SAR regime. For a
large superconductor pair potential, the G=S coupling is very
weak. Therefore the energy levels are approximately the
Landau levels of graphene. This is shown with blue curves.
For a small superconductor pair potential, the coupling of the
graphene with the superconductor results in a decrease of the
energy levels. The coupling is stronger where the carrier
density is higher in the graphene. Since the density of a
Landau level varies with Xky , the energy becomes dispersive
with Xky . For N ¼ 1, the carrier concentration peaks at
Xky ¼ 0 and thus the energy minimum occurs at Xky ¼ 0. For
N ¼ 2 the carrier concentration has two peaks at finite Xky
and the energy dispersion has two minima at finite Xky . For
the Nth Landau level, there are N concentration maxima. The
number of energy minima equals the number of concentration
maxima.

3.3 Effective electrical charge of the single-particle
excitations

As in the case for Bogoliubov quasiparticles in a
conventional superconductor, the Dirac–Andreev edge states

Fig. 2. (Color online) The energy dispersion for EF ¼ 0, the red dash line
is for the pair potential �0 ¼ 2:5 and the blue line is for �0 ¼ 10. Inset:
Energy dispersion relation ENðXky Þ for Fermi energy EF ¼ 1 and the pair
potential �0 ¼ 10. The blue line is for V0 ¼ 0. The red lines represent the K
and KA valleys, respectively, for V0 ¼ 10000.
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are coherent superpositions of particles and holes. Con-
sequently, their effective electrical charge generally has a
nonquantized value and is given by

eð�Þ ¼
Z
d2r½�ðrÞ�y
z�ðrÞ; ð22Þ

where 
z ¼ ð I4 0

0 �I4
Þ.

The calculated effective charges eðN;Xky Þ of states �NðXkyÞ
for N ¼ 0, 1, 2, 3 with V0 ¼ 0 are shown in Fig. 3 as a
function of Xky . The effective charge changes the sign, which
indicates the presence of a neutral Fermionic mode at a finite
value of Xky . The neutral Fermionic mode has been
demonstrated recently in a TI=S hybrid.19) The mechanism
and properties of the neutral Fermionic states presented here
for the G=S hybrid are quite different to that in a TI=S hybrid.
The neutral Fermionic state in a G=S hybrid is due to the
coupling between orbital motion and the pseudo spin. The
mathematical structure of the Hamiltonian is very similar
for both systems. For N ¼ 0 mode, eð0;�Xky Þ ¼ �eð0;Xky Þ. The
N ¼ 0 state has zero effective charge at Xky ¼ 0. The more
remarkable picture here is that, for a zero Fermi level, the
neutral Fermionic state can also exist in higher Landau levels,
i.e., eð�N;�Xky Þ ¼ �eðN;Xky Þ. This results in a zero effective
change at Xky ¼ 0 for N ≠ 0. This effect is totally missing in
a TI=S hybrid. The result is a direct consequence of DBdG
equation. As mentioned early the definition of the effective
charge given by Eq. (5) is not a quantum number and it is
possible for it to acquire any value. For the N ¼ 0 LL, the

charge neutral state has a unique property that its antiparticle
is itself. For the charge neutral states in high LLs, this
requirement is not satisfied. In the present system, the
symmetry eðN;�Xky Þ ¼ �eðN;Xky Þ is maintained but clearly the
antiparticle of the charge neutral state in the Nth LL is not
itself. We note that the effective charge in the high LL can
also acquire a zero value in a TI=S hybrid.19) However, in the
TI=G hybrid it occurs at finite wavenumbers and does not
have the symmetry of eðN;�Xky Þ ¼ �eðN;Xky Þ. This symmetry in
the G=S hybrid is a direct consequence of valley degeneracy
in the graphene and the Andreev reflection at the interface.
Formation of charge neutral states is of importance in
understanding the nature of the interface states in a G=S
hybrid. At the G=S interface, an incident electron in the K-
valley can only pair with another electron in the KA-valley.

Although the charge neutral Fermionic states reported here
have the property of eðN;0Þ ¼ 0, they are not strictly Majorona
mode. Such non-Majorona charge neutral modes can result in
interesting physical properties. For example, a totally differ-
ent type of charge neutral Fermionic modes have been
proposed and detected in fractional quantum Hall states.23,24)

These modes played an important role in understanding the
fractional quantum Hall states of  ¼ 8=3; 7=3. Recently
chiral edge states with neutral fermions has been observed in
synthetic Hall ribbons.18)

A solution of electronic state being electrically neutral is
not only important conceptually in understanding why they
behave as they do, it is also useful in the quantitative
analysis, because it provides a link between the concen-
trations of the incident electrons and the reflected holes. A
most important consequence of this principle is that it is not
possible to add a single species of electron to a solution all by
itself. Some other species of opposite charge (reflection hole)
must always be added at the same time, and its amount and
identity must be incorporated into calculations of effective
charge.

4. Edge Current in the Vicinity of G=S Interface

4.1 Formulation of charge current density
The edge states can produce the current in the vicinity of

both sides of interface. Starting from the time-dependent
version of the DBdG Eq. (1)

iħ
@

@t
� ¼ bH� ð23Þ

with the wave function:

� ¼ uAK; uBK; uAK0 ; uBK0 ; vAK0 ; vBK0 ; vAK; vBK
� �T

¼ uK; uK0 ; vK0 ; vK
� �T ¼ u; v

� �T
; ð24Þ

the following continuity equation for the probability current

@t
�u

�

 !
þ @y

Ju

J

 !
¼

S

�S

 !
ð25Þ

are got, where

S ¼ 2Imð�uyvÞ
ħ

: ð26Þ

Specific to the NS graphene junction described in this paper,
the current flows in y-direction. So, we look at the currents

near the interface where for each quasiparticle state M ¼
½Xky ; EðXkyÞ� in the spectrum the electron-like and hole-like
excitations probability currents density25) JuM and JvM are

JuM ¼ vF½uyK�yuK � uyK0�yuK0 � ð27Þ
and

JvM ¼ �vF½vyK�yvK � vyK0�yvK0 �: ð28Þ
Sum over all quasiparticle states and the charge current
density at the interface is found as

Fig. 3. (Color online) Effective electric charge eðN;Xky Þ of the single-
particle excitations as a function of Xky (in units of lB) for N ¼ 0; 1; 2; 3

Landau branches as shown in the legend. The delta potential strength is
V0 ¼ 0 and �0 ¼ 2:5.
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J ¼ e
X
M

ð fMJuM þ ð1 � fMÞJvMÞ

¼ evF
X
M

ð fMðuyK�yuK � uyK0�yuK0 Þ

� ð1 � fMÞðvyK�yvK � vyK0�yvK0 ÞÞ

¼ evF
X
M

ð fMðuyK�yuK � uyK0�yuK0 þ vyK�yvK � vyK0�yvK0 Þ

� ðvyK�yvK � vyK0�yvK0 ÞÞ; ð29Þ
where fM ¼ f0ðE � �EFÞ, f0ðEÞ ¼ 1

e�Eþ1 is the Fermi–Dirac
distribution, EF is the Fermi energy at the superconductivity
region, and � ¼ 1 (−1) for the electron (hole) component.
The formulation for the current of BdG equation is defined in
Ref. 26 by written in terms of a sum over quasiparticle states,
J ¼ JBdG þ JVAC where the BdG quasiparticle component of
the electron current is given by the term linear in ffMg and on
the other hand, the condensate vacuum current is identified
with the term which is independent of the occupation
probabilities f fMg, i.e.,

JBdG ¼ e
X
M

½JuM � JvM� fM ð30Þ

and

JVAC ¼ e
X
M

JvM: ð31Þ

All the states below the Fermi energy can contribute to the
current. Taking account all the states, the spatial distributions
of charge currents can written in the form

JL ¼
Z
dky

X
EðXky Þ

	
fFðEÞðjc�þþj2 þ jc��þj2Þ

ðE þ EFÞffiffiffi
2

p

�Dzþ�1ð�
ffiffiffi
2

p
ðx þ kyÞÞDzþð�

ffiffiffi
2

p
ðx þ kyÞÞ

� ð1 � fFðEÞÞðjc�þ�j2 þ jc���j2ÞðE � EFÞ=
ffiffiffi
2

p
Dz��1

� ð�
ffiffiffi
2

p
ðx � kyÞÞDz�ð�

ffiffiffi
2

p
ðx � kyÞÞ



ð32Þ

in the graphene region and

JR ¼ vSF
vGF

X
EðkyÞ

Z
dky e

�2k00x2
X
	¼�

	

(
ð fFðEÞ � 1Þðjdþ	þj2

þ jdþ	�j2Þ Im
kðþÞx � i	ky

kþ

� �
þ fFðEÞ2 cos � Im dþ	þd

þ�
	�e

2ik0x ðkðþÞx � i	kyÞ
kþ

	 


� 2 Im dþ	þd
þ�
	�e

2ik0xe�i�
ðkðþÞx � i	kyÞ

kþ

	 
)
ð33Þ

in the superconductor region.

4.2 Distribution of equilibrium edge current
Because we are interested in those contributions due to the

AR, only those states in the gap window of the super-
conductor, jEj � �0, are considered in the calculations of
current. The distribution of equilibrium edge current at zero
temperature for zero and finite interface potential barrier V0 is
shown in Figs. 4 and 5. We take the value of magnetic field
used in experiment B ¼ 3:7T.27–29) Correspondingly, E0 ¼
ħvGF =lB ¼ 50meV.

As shown in Figs. 4 and 5, in the graphene region far away
from the boundary, the current density is zero due to the
wave function of one state with given ky is antisymmetric
relative to the point Xky . This is consistent with that the states
localized deep inside the system are not influenced by the
boundary. For the edge states, due to the reflection at the
boundary, the current density becomes nonzero. In the
superconductor region, the phase information of quasiparticle
excitations is preserved during their traversal in the G=S
hybrid and gives rise to quantum interference effects in the
spatial current density. Therefore, the current density is
oscillatory and the amplitude decays away from the interface
in the superconductor region.

The distribution of current density depends on the
occupation of Landau levels. Each time when the Fermi level
crosses a Landau level, there is an additional contribution to
the current. In the graphene region it is found that the higher
the Fermi level is, the wider region the state occupies and the
more channels contribute to the current density, shown in
Figs. 4 and 5. It should be noted that in the calculation of the
current spatial distribution of half-infinite graphene, all states
below the Fermi energy are included. Now the states included
not only need to be below the Fermi energy but also should be
restricted within the superconductor energy gap. Carriers with
energy greater than the gap contribute to the normal current
which does not depend on the G=S coupling. In the specific

Fig. 4. (Color online) The energy-dependent current density (in unit of
e2BvF
�ħ ) in the region near armchair boundary. B ¼ 3:7T, �0 ¼ 1:0meV, and
V0 ¼ 0.

Fig. 5. (Color online) The energy-dependent current density (in unit of
e2BvF
�ħ ) in the region near armchair boundary. B ¼ 3:7T, �0 ¼ 1:0meV, and
V0 ¼ 25meVlB.
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situation in which the superconductor energy gap is the same
as the Fermi energy and in the infinite potential limit, we
can recover the current distribution in Ref. 9. In the super-
conductor region, the current density at the boundary
oscillates with the filling factor as shown in Figs. 6 and 7.
But with the filling factor increasing, the oscillatory frequency
at a fixed position in a period becomes smaller with more
Landau levels. The oscillatory frequency decreases gradually
though their initial phases at the boundary as � ¼ ðEF=E0Þ2=2
increases from 0.8 to 2.8.

The effect of neutral Fermionic states on the current
distribution can be seen from the position dependent current
density. As expected, at high energy (or large χ) more levels
will contribute to the current in the graphene side. (i) In
comparison of Figs. 6 and 7, it is found that the current
characteristics that is unique to the present system is the
current discontinuity at the boundary in the presence of
nonzero interface potential. This discontinuity of current
density arises from the discontinuity in the wave functions
crossing the boundary where the interface potential is
nonzero. Since the current operator is proportional to the
wave functions, a current density discontinuity appears at the
interface. The current density at the interface becomes
continuous for a perfect interface, as shown in Fig. 6. (ii)
At the interface the current density is zero indicating missing
charges of quasi-particles at the interface. This is a direct
consequence that effective charge for all Landau levels are
zero at the interface, as shown in Fig. 3. We propose that the

missing current has the origin of formation of charge neutral
Fermionic states near the boundary. These neutral states do
not contribute to the current in the vicinity of the boundary. It
can be shown that for graphene=metal junctions, there is no
zero current density at the interface.

5. Concluding Remarks

In conclusion, we have demonstrated the interface
electronic properties due to the normal state=superconductor
coupling in a G=S hybrid. The coupling gives rise to the
formation of charge neutral Fermionic states in the ground
state and in all excited states. Because the zero effective
charges in all states at the interface, the electrical current
density vanished at the interface. In the absence of an
interface potential the current density is continuous crossing
the interface. In the case of a finite interface potential, a
current density discontinuity appears at the interface.
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