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of AI, the von Neumann AI structure has 
faced huge challenges in terms of large-
scale integration and consequently the 
high energy consumption.[1] Inspired by 
the brain, the emerging non-von Neu-
mann AI structure based on neuromor-
phic computing has been proposed.[2] Due 
to the distributed storage and parallel com-
puting, the neuromorphic architecture is 
much more efficient than conventional 
computers in handling data from AI. This 
approach can solve the intense energy 
consumption problems. An artificial syn-
apse is the basic unit of the new architec-
ture, and thus many recent research works 
have focused on the design of artificial 
synapse by using the phase change,[3–5] 
ferroelectric domains switching,[6] conduc-
tive bridge,[7–9] electrolyte gating,[10] and 
other mechanisms[11,12] to emulate the bio-
logical synapse behavior.

Since the discovery of graphene, 2D 
van der Waals materials have been extensively studied for 
their intriguing physical and chemical properties. Owing to 
its unique layered structure which facilitates the intercala-
tion of functional ions, the van der Waals materials have been 
employed to simulate the rich functionality and dynamics of 
synapses.[13–17] Furthermore, as the neighboring layers were 
combined by van der Waals forces, different 2D materials can 
be integrated in a designed sequence to form heterostructures. 
The integrated architecture provides the possibility for simu-
lating more complex synaptic functions.[18]

From the viewpoint of device structure, artificial synapses 
can be generally classified into two categories: two-terminal 
devices and synaptic transistors. Compared to two-terminal 
devices, synaptic transistors can receive and process external 
stimuli simultaneously.[19] Moreover, synaptic transistors with 
several gates can integrate many presynaptic signals in one 
device to simulate concurrent learning and dendrites integra-
tion.[20] Taking dual-gated transistors as an example, the dual-
gated architecture allows to implement local activity correla-
tions for one gate and to achieve the global plasticity modula-
tion for the other gate. This feature makes dual-gated synaptic 
transistor implement complex functions, such as neuronal plas-
ticity modulation and higher order temporal correlations.[18,21] It 
is worth noting that the two gates of the dual-gated transistors 
can also be regarded as two input terminals to realize the logic 
operations.[22,23] With the additional modulatory gate, the pri-
mary logic function (OR and AND) can be achieved in a single 

Neuromorphic computers, which can store information and compute at 
the same time, have been considered to be a potential candidate for greatly 
improving computing efficiency. The development of high-performance 
artificial synapses, which are the basic unit of brain-like chips, is very impor-
tant for realizing efficient neuromorphic computing. Here, a dual-gated 
MoS2 transistor is designed to realize synaptic functions and programmable 
logic operations. The channel conductance is modulated via top electrolyte 
gating to mimic important synaptic functions, such as excitatory postsyn-
aptic current, paired-pulse facilitation, and spike-timing dependent plasticity. 
The synaptic transistor exhibits ultra-low energy consumption with 12.7 fJ. 
Furthermore, the MoS2 transistor can dynamically reconfigure the logic opera-
tions of “AND,” “OR,” and “NOT” by combining top electrolyte gating with 
back gating. Classical Pavlov’s dog experiment can be simulated by the dual 
gated device. These results indicate that the proposed synaptic transistor 
has potential applications in realizing neuromorphic and programmable logic 
devices.
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1. Introduction

Artificial intelligence (AI) is a branch of computer science that 
can do a lot of the complex work usually requiring human intel-
ligence. Currently, the majority of AI applications are based on 
von Neumann machines. However, with the rapid development 
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transistor, which can increase the integrated circuit density, but 
these volatile logic transistors can’t store the assigned func-
tion.[21,24,25] Compared to the volatile reconfigurable logic gate, 
the nonvolatile reconfigurable logic gate is more efficient in 
dealing with application in machine learning and data analytics. 
Although some nonvolatile reconfigurable logic gate based on 
light-gated transistor has been proposed, there are still a lot of 
technical problems to be solved. For example, the light source 
needs to be integrated into the circuit.[26,27]

Here, we demonstrated a dual-gated MoS2 transistor to 
reconfigure the logic operation by combining electronic and 
ionic regulation modes. Furthermore, we used the ionic regula-
tion mode to emulate various synaptic functions. The designed 
synapse exhibited ultralow energy consumption down to 12.7 
fJ per spike, indicating its potential application. An artificial 
neural network consisting of the proposed synaptic transistor 
was simulated, and a high recognition accuracy (93.9%) for the 
large digits was achieved. Finally, the classical Pavlov’s dog con-
ditioning experiment was emulated, exhibiting a basic form of 
associative-memory in our device.

2. Results and Discussion

2.1. Electrolyte Gated MoS2 Transistor

Figure 1a illustrates the layered structure of 2H phase molyb-
denum disulfide (2H-MoS2). A single layer of MoS2 consists 
of three layers of atoms, in which the Mo layer is sandwiched 
between two S layers. MoS2 layers are held together by weak 
van der Waals forces with 0.615  nm interlayer spacing.[28] To 
mimic the biological synapse, a dual-gated transistor based 
on the 2H-MoS2 flake with a thickness of 5.6  nm was fabri-
cated. The 2H-MoS2 flake was fabricated on an n-type silicon 
substrate coated with a 300  nm thick SiO2 layer by mechan-
ical-exfoliation, and the Au electrodes were deposited using 
the thermal evaporation technique. The linear I–V curve 

between the source and drain electrodes implies a good ohmic 
contact (Figure S1, Supporting Information). The thickness 
of the MoS2 flake was nine layers measured by atomic force 
microscope (AFM) and Raman spectra (Figure S2, Supporting 
Information). The ionic liquid N, N-diethyl-N-(2-methoxyethyl)-
N-methylammonium bis-(trifluoromethyl sulphonyl) imide 
(DEME-TFSI) was utilized as a dielectric layer, which covered 
the MoS2 channel and the top gate electrode. The schematic 
of the device is illustrated in Figure  1b and Figure S2a, Sup-
porting information shows the optical picture of the electro-
lyte-gated MoS2 transistor. The top and back gate electrodes 
are treated as two different presynaptic terminals to modify 
the conductance of the channel layer, which serves as a post-
synaptic terminal. The transfer curves of the MoS2 field-
effect transistor under top gating were obtained by sweeping 
the voltage of the back gate from –1.5 to 1.5 V and then back 
(Figure 1c). The device exhibited a high on/off ratio (≈105). The 
transistor under top electrolyte gating showed an anticlock-
wise hysteresis (AH) (Figure  1c), while the transistor under 
back gating showed a clockwise hysteresis (CH) (Figure S3a, 
Supporting Information). The AH behavior during top elec-
trolyte gating is attributed to the migration of cations and 
anions in an electrolyte and its relaxation dynamics.[14] For the 
CH behavior during back gating, the electron trapping from 
the dangling SiO bonds at the SiO2MoS2 interface could 
be responsible for the CH loop.[29] The output curves of the 
electrolyte-gated transistors were measured by sweeping the 
Vsd from 0 to 1.5  V, with a fixed top gate voltage varied from 
−1.5 to 2.6 V (Figure 1d). This device exhibited excellent line-
arity at low voltages as well as good pinch-off characteristics at 
high voltages. The top-gated MoS2 transistor with ionic liquid 
exhibits much lower pinch-off voltage compared to the back-
gated MoS2 transistor with SiO2 (Figure S3b, Supporting Infor-
mation), which is due to the strong regulation ability of ionic 
liquids.

2.2. Synaptic Plasticity Emulated by MoS2 Transistors under Top 
Electrolyte Gating

The connection strength between presynaptic neurons and post-
synaptic neurons is called the synaptic weight. Specific presyn-
aptic action potentials can lead to a change in synaptic weight, 
which is considered to be the basis of learning and memorizing in 
the human brain. A typical excitatory post-synaptic current (EPSC) 
of the synaptic device triggered by the presynaptic spike (0.5  V, 
5.5  ms) is shown in Figure  2a. Then, three presynaptic voltage 
pulses with different amplitudes (0.1, 0.5, 1.5 V) and a fixed pulse 
width of 5.5 ms were used to simulate the EPSCs of the synaptic 
device (Figure  2b). Short-term plasticity (STP) was transformed 
into long-term plasticity (LTP) with increasing the presynaptic 
pulse amplitude. Moreover, the transformation from STP to LTP 
could be realized by varying the pulse number and the pulse dura-
tion time (Figures S4 and S5, Supporting Information). Paired-
pulse facilitation (PPF), as an important form of STP, which is 
involved in simple learning, information processing, sound 
source localization, and so on.[30,31] To emulate PPF, the top-gated 
MoS2 transistor was triggered by top gate voltage pulses (0.5 V for 
5.5 ms). The PPF can be obtained by the equations below.[32,33]
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Figure 1.  a) The crystal structure of 2H-MoS2. b) The schematic illustra-
tion of the device structure. c) Transfer curve of the device. The source–
drain current (Isd) and the gate current (Igate) were presented by the blue 
and red lines, respectively. The arrows denote the scanning direction 
during electrolyte gating. The applied Vds is 1  mV in transfer curve. d) 
Output characteristics at different top gate biases.
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where A1 and A2 represent the first and second EPSC ampli-
tudes, respectively. The PPF index dependent time interval of 
two spatiotemporal correlated inputs is shown in Figure 2c. A 
double exponential decay function fits the PPF index well,[34,35]
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where t is the interval time of the presynaptic pulse, C1 and 
C2 are the initial facilitation magnitudes of the rapid and slow 
phases, and τ1 and τ2 are the characteristic relaxation times of 
the rapid and slow phases, respectively. All these parameters 
were extracted from the fitting equation: C1  = 111.8%, C2  = 
9.7%, τ1  = 5.39  ms, τ2  = 111.87  ms for PPF. The distinction 
between τ1 and τ2 is clear, and the relaxation times are com-
parable to those in the biological synapse.[36] We further inves-
tigated the dependence of the EPSC on the pulse frequency 
(Figure  2d), and EPSC amplitude rate (A10/A1) was plotted as 
a function of the pulse frequency (Figure  2e). A good linear 
relation was obtained between the ratio and the frequency 
(Figure 2e). The ratio changed from 1.9% to 33.6%, as the fre-
quency increased from 1 to 180  Hz. This behavior illustrates 

the potential application of our device in high pass filtering, 
which can be used to mimic sensory neural communication 
of the eye.[14] EPSC was stimulated by a series of presynaptic 
pulses voltage with the same duration time (5.5  ms) and dif-
ferent voltage amplitudes ranging from 0.1 to 1.5 V with a step 
of 0.1 V, as shown in Figure S6, Supporting information. The 
energy consumption can be calculated from the equation E  = 
IP  ×  VD  ×  t, where IP is the peak value (2.31 nA) of the EPSC, 
VD is the applied drain voltage (1 mV), and t is the spike dura-
tion (5.5  ms). The energy consumption and corresponding 
long-term synaptic weight change were summarized as a func-
tion of presynaptic spike amplitude (Figure  2f). It should be 
noted that when the presynaptic spike amplitude was as low as 
0.1 V, the minimum value of the energy consumption per spike 
in the short-term mode was obtained at 12.7 fJ.

It can be seen that the long-term weight change was increased 
with increasing the voltage amplitudes. Spike timing-dependent 
plasticity (STDP) is a biological process that regulates the strength 
of neuronal connections and exhibits temporal asymmetry. To 
mimic STDP in the device, we used a multiplexer to convert the 
pre- and post-neuron spikes, and the output terminal was con-
nected to the top gate electrode (Figure S7c, Supporting Infor-
mation). The waveform of the preneuron spikes and postneuron 
spikes was shown in Figure S7a,b, Supporting information. A typ-
ical asymmetric form of STDP was demonstrated in our electro-
lyte-gated synaptic transistor (Figure S7d, Supporting Information).

2.3. Simulation of Image Classification

In synaptic transistors, the change of channel conductance 
leads to the change of synaptic weight. We realized long-
term potentiation and depression processes by changing the 
channel conductance. The long-term potentiation process was 
driven by 20 top gate voltage pulses (1 V for 6 ms spaced 1 s 
apart), while the long-term depression process was driven by 
20 top gate voltage pulses (−0.9 V for 6 ms spaced 1 s apart). 
The conductance of the channel was varied from 1.8 to 3.8 µS. 
The potentiation and depression processes can be mimicked 
continuously by applying consecutive positive and negative 
spikes, reflecting reproducible switching (Figure 3a). We sim-
ulated the performance of an artificial neural network using 
the experimentally measured conductance states (Figure  3a) 
for training with back-propagation of two data sets, a small 
image version (8 × 8 pixels) of handwritten digits from the 
“Optical Recognition of Handwritten Digits ” dataset,[37] and 
a large image version (28 × 28 pixels) of handwritten digits 
from the “Modified National Institute of Standards and Tech-
nology” dataset.[38] A three-layer artificial neural network 
with one hidden layer was utilized in our simulations using 
CrossSim simulator (Figure  3b). The hardware implementa-
tion with the synaptic layer is given in a schematic illustration 
(Figure  3c). By comparing with the performance of the ideal 
floating-point-based neural network, the evolution of recogni-
tion accuracy with training epochs for small and large digits 
is plotted in Figures  3d and 3e, respectively. For the small 
digits, the recognition accuracy approached 90% within the 
second training epoch, and the recognition accuracy remained 
94.5% after 17 training epochs. In contrast, the maximum of 
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Figure 2.  a) A typical EPSC of an MoS2 synaptic device stimulated by 
a top gate voltage pulse (0.5 V, 5.5 ms). b) EPSC triggered by a series 
of presynaptic spikes, which are caused by top gate voltage with same 
duration time (5.5 ms) and different amplitudes (0.1, 0.5, and 1.5 V). c) 
The PPF index dependent time interval of two spatiotemporal correlated 
inputs. The double exponential decay function is used to fit the date of 
PPF index. Inset: pairs of presynaptic voltage pulses and the stimulated 
EPSC are plotted as a function of time. d) The EPSCs stimulated by a 
series of stimulus sequences with different frequencies varying from 0.5 
to 180 Hz. e) Presynaptic spike frequency dependence of EPSC amplitude 
rate (A10/A1). f) The energy consumption per spike (left) and the long-
term synaptic strength change (right) as a function of pulse amplitudes 
when the pulse width is fixed at 5.5  ms. ΔW is the synaptic strength 
change and W0 is the initial synaptic strength for the artificial synapses.
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the ideal floating-point-based neural network was estimated 
to be 96.7%. For the large digits, compared to the maximum 
of 98.2% for the ideal floating-point-based neural network, the 
recognition accuracy could exceed 90% within the second 
training epoch, and reached 93.9% after 40 training epochs. 
The recognition accuracy of the MoS2 based synaptic transistor 

for the large digits is slightly lower than that obtained by 
others in recent experiments.[39,40] However, the present result 
is higher than the two-terminal resistive memory devices.[41,42] 
To improve the device performance, there is still a lot of work 
to be done to improve the linearity and symmetry in the pro-
cess of the rising and falling conductance variation process, 
which is key to improve the recognition accuracy.[40]

2.4. Dynamic Process of Short and Long-Term Memories

To concretely mimic the short- and long-term memories, 
images “C,” “A,” and “S” were written alternately on a 5 × 7 
synapse array, by applying 30 voltage pulses with top gate volt-
ages at 0.4, 1.5, and 0.4 V, respectively (Figure 4). The 35 syn-
apse array was operated on individual devices. The duration 
and time interval were fixed at 6 ms for each training sequence. 
The initial state of the synaptic array was shown in Figure 4a, 
where the color level and the height exhibited the values of 
conductance in the whole process. Then, the image of “C” was 
imported into the synapses array by applying a series of top 
gate voltage pulses (0.4 V for 6 ms with an interval of 6 ms, 30 
pulses) (Figure 4b). After 4 s, the image of “C” could not be dis-
tinguished (Figure 4c), which indicates the short-term memory 
behavior of this process. Next, by applying repeated top gate 
voltage pulses (1.5  V for 6  ms with an interval of 6  ms, 30 
pulses), the image of “A” was imported into the synapse array 
(Figure 4d). The image of “A” could be maintained after period 4 
s, which demonstrates long-term memory (Figure 4e). Then, the 
image of “S” was inputted by using low top gate voltage pulses 
(0.4 V for 6 ms with an interval of 6 ms, 30 pulses) (Figure 4f). 
After 4 s, the image of “S” disappeared while the image of “A” 
could still be recognized (Figure  4g), which demonstrates the 
difference between short- and long-term memories. In the end, 
the image of “A” was erased from the synapses array by using 
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Figure 3.  a) Channel conductance variation versus pulse number (left). 
Twenty distinct states are shown for the long-term potentiation and 
depression processes, respectively, which are triggered by repeated posi-
tive and negative top gate voltage pulses. The zoom-in view (right) shows 
the first cycle. b) Schematic image of a three-layer neural network. c) 
Schematic image of the synaptic layer made up of electrolyte-gated MoS2 
transistor crossbar array and access device. Evolution of recognition 
accuracy with training epochs for d) small and e) large digits.

Figure 4.  Dynamic process of STM and LTM in a synaptic array. a) The initial state of the synaptic array. b) The image of “C” was inputted into the 
synapse array by applying a series of top gate voltage pulses (0.4 V for 6 ms with an interval of 6 ms). c) After a period (4 s), the image of “C” could not 
be distinguished. d) The image of “A” was imported into the synapses array by using repeated top gate voltage pulses (1.5 V for 6 ms with an interval of 
6 ms). e) The image of “A” could be recognized in 4 s. f) The image of “S” was inputted by using the same voltage series as stage (b). g) The image of 
“A” could be recognized while the image of “S” disappeared. h) The image of “A” was erased from the synapses array by using a reverse top gate voltage.
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a reverse top gate voltage (Figure 4h). The typical EPSC curve 
corresponds to one of the pixel was shown in Figure S8, Sup-
porting Information. In summary, the experiment successfully 
demonstrated the coexistence of the short- and long-term mem-
ories in the proposed artificial synapse.

2.5. Configurable Logic Operations with Dual Gating

The decision-making ability in human brain is owed to the 
different logic operations.[43] Programmable logic circuits, 
which can dynamically reconfigure the logic operations, are 
considered as an effective approach to enhance these func-
tions.[26,27,44,45] Here, we demonstrated that the dual gated MoS2 
transistor can dynamically reconfigure the logic operation. As 
shown in Figure  1b, the top electrolyte gate (Gate 1) and the 
back gate (Gate 2) were regarded as two input terminals, while 
the drain was regarded as the output terminal. The source elec-
trode was always grounded. When a voltage pulse (1.6  V for 
6 ms) was applied to Gate 1, the transistor changed to a more 
conductive state. On the contrary, a voltage pulse (−1.2  V for 
6  ms) was applied to Gate 1 to recover its pristine state. The 
conductance states can be switched reversibly (Figure  5a). 
A schematic illustration of the logic operations was shown 
in Figure  5b. A voltage pulse (1.6  V for 6  ms) was applied to 
the Gate 1 to convert “AND” logic into “OR” logic, and then a 
voltage pulse (−1.2 V for 6 ms) was applied to reverse the logic 
back. Here, a threshold current (3.5 nA) was set for the postsyn-

aptic current to define the “0” and “1” states. Figure 5c showed 
the dynamic process of logical operation and logical transfor-
mation. The red dotted line represented the threshold current. 
At the initial low conductance state, the output current could 
exceed the threshold when both inputs occurred simultane-
ously (“AND” logic). When the device reached its high conduct-
ance state, as long as one of the two inputs occurred, the output 
current could exceed the threshold (“OR” logic). The truth table 
summarizes both types of logic (Figure 5d) in which the post-
synaptic current was obtained from Figure 5c. When the input 
voltage was high for Gate 2, the induced postsynaptic current 
was opposite to the polarity of the input voltage due to the elec-
tron trapping.[14] The output level was opposite to the input 
level. This characteristic could be utilized to simulate “NOT” 
logic and the schematic illustration was shown in Figure  5e. 
The dynamic process of the “NOT” logical operation was 
shown in Figure 5f. The dotted line represented the threshold 
current (3.5 nA).

To investigate the endurance property of the logic operation 
and switching, we repeated the process of “AND logic-set-OR 
logic-reset,” and the cyclic results of “AND” logic and “OR” 
logic was shown in Figures  5g and 5h, respectively. Hollow 
spheres represented the postsynaptic spike current below the 
threshold (dotted line), that is, the “0” state, while the solid 
sphere represents the postsynaptic spike current above the 
threshold (dotted line), that is, the “1” state. It should be noted 
that the postsynaptic spike currents triggered by Gate 1 were 
almost equal to the one triggered by Gate 2, and thus they are 
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Figure 5.  a) Modulation between the high and low resistance states. b) A schematic illustration of the logical converter between the “AND” logical 
operation and “OR” logical operation. c) Dynamic reconfiguration of logic operation: two different logic responses were drawn by the red and green 
lines. Two stimulus pulses, 0.7 V for 5.5 ms and 2.2 V for 5.5 ms, were applied to the Gate 1 and Gate 2 respectively. Set process: a presynaptic spike 
(1.6 V for 6 ms) is applied on the Gate 1 for transfer the “AND” logical operation to the “OR” logical operation. Reset process: a presynaptic spike (−1.2 V 
for 6 ms) is applied on the Gate 1 for transfer the “OR” logical operation to the “AND” logical operation. d) The truth table and output current for dif-
ferent logical operations. e) Schematic illustration of the “NOT” logical operation. f) The dynamic process of the “NOT” logical operation: two stimulus 
pulses, −30 V for 500 ms and 19.5 V for 500 ms, were applied to the Gate 2. Endurance property of g) “AND,” h) “OR,” and i) “NOT” operations.
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indistinguishable. The endurance property of the “NOT” logic 
was also investigated (Figure  5i), indicating good device per-
formance. Thus, We realized both synaptic and programmable 
logic operation functions in this dual-gated MoS2 transistor, dif-
ferent from other works (Table 1).

2.6. Simulation of Pavlov’s Dog Experiment

Pavlov’s dog experiment, a classical conditioning experiment, 
is one of the expression forms of the associative learning 
in the brain, that is, creating the association between the 

presynaptic inputs. Here, the proposed device was used to 
simulate this experiment (Figure 6). First, the EPSC (1.75 nA) 
was defined as the threshold current for the dog’s saliva-
tion response drawn by a red dotted line. Here, the voltage 
pulses applied to Gate 1 were used to simulate the uncondi-
tioned stimuli (feeding the bone) causing the unconditioned 
response (salivation), that is, the EPSC exceeded the threshold 
current (Stage (i)). The voltage pulses applied to Gate 2 were 
used to simulate the conditioned stimuli (ring the bell) as 
shown in Stage (ii) Initially, an effective association between 
unconditioned stimuli (feeding the bone) and conditioned 
stimuli (ring the bell) was not built by a short period of 
training (5.5 ms) with simultaneous feeding and ringing the 
bell (Stage (iii)). However, when the training time increased 
to 10 s, the association between unconditioned stimuli and 
conditioned stimuli was strengthened, after which the dog’s 
salivation could be caused by conditioned stimuli alone (Stage 
(iv)). Nevertheless, without the repeated training with simul-
taneous unconditioned and conditioned stimuli, the efficient 
conditioned response weakened and disappeared gradually 
(Stage (v)). It is similar to forgetting of old information in the 
brain, which is considered to be essential to the efficient func-
tioning of the mind. Finally, as shown in Stage (vi), the asso-
ciation could get back to previous levels after a shorter time 
training (5 s), similar to the biological learning curve, due to 
the electron accumulation induced by repeated training. It 
should be noted that the built association could be removed 
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Figure 6.  Schematic diagram of the outline of Pavlov’s dog experiment. i) Unconditioned stimuli. ii) Conditioned stimuli. iii) Initial training with simul-
taneous application of unconditioned and conditioned stimuli did not result in effective association. iv) With an increase in the training sequences, the 
association between unconditioned and conditioned stimuli was strengthened, after which the conditioned stimuli could produce salivation, indicating 
efficient response. v) However, without repeated training with simultaneous unconditioned and conditioned stimuli, the efficient conditioned response 
weakened and disappeared gradually. vi) The same level of association was rebuilt after a short-time training.

Table 1.  Device performance in 2D material transistors.

Materials External 
electrolyte

Nonvolatile 
logic operation

Neuromorphic 
computing

Refs.

WSe2 Li+ No No [13]

MoS2 DEME-TFSI No No [14]

MoS2 Li+ No Yes [46]

MoS2 Chitosan No No [25]

MoS2 PVA No No [23]

MoS2 PVA No No [21]

MoS2 PVA No No [24]

MoS2 DEME-TFSI Yes Yes This work
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rapidly when the specific stimuli (−1.2 V, 5.5 ms) was applied 
to Gate 1 (Figure S9, Supporting Information). This reflected 
that an aversive stimulation could result in the damage of the 
efficient association to emulate the destruction of conditioned 
responses by other stimuli.

3. Conclusion

In summary, the dual gated synaptic transistor based on the 
MoS2 flake with a thickness of 5.6  nm was fabricated. The 
device exhibited large on/off ratio (Ion/Ioff > 105) in the transfer 
curve, and good pinch-off characteristics in the output curves. 
The device under top electrolyte gating successfully emulated 
synaptic plasticity and STDP. Furthermore, it exhibited ultra-
low energy consumption (12.7 fJ), which can be comparable 
to the biological synapses. By combining top electrolyte gating 
and back gating together, the MoS2 based synaptic transistor 
realized configurable logic operations of “AND,” “OR,” and 
“NOT,” and simulated Pavlov’s dog experiment. All the results 
indicated that the dual gated MoS2 synaptic transistor has a 
potential application in neuromorphic and programmable logic 
devices.

4. Experimental Section
Device Fabrication: The 2H-MoS2 sheet was exfoliated from bulk 

crystal and transferred onto an n-type silicon substrate with a 300  nm 
thick SiO2 surface layer. Electron-beam lithography was used to define 
patterns for metal contacts on PMMA resist spin coated over the flakes 
and the Au electrodes were deposited using the thermal evaporation 
technique. The ionic liquid DEME-TFSI was utilized as a dielectric layer, 
covering the MoS2 channel and the top gate electrode.

Characterization Measurements: The Raman characterization was 
obtained by using the alpha300 R microscope under 532  nm laser 
excitation. By using an optical microscope, the thin flake was identified, 
and then the flake thickness was defined by an AFM.

Electrical Measurements: All the electrical measurements were 
conducted in a Lakeshore probe station using Keithley 4200 
semiconductor parameter analyzer at the ambient conditions. The 
source–drain current Isd was measured using 4200 SMU module with 
preamplifier, while the gate leakage current Igate was measured using 
4200 SMU module. During the measurements, a constant voltage 2 mV 
was applied to the source–drain electrodes to read the current for the 
configurable logic operations, and 1 mV was applied to the source–drain 
electrodes for other measurements. The scanning rate is 5 mV s−1 during 
measuring the transfer curve.
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from the author.
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