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The resistivity ρ of La
1–x

Te
x
MnO

3
 (x = 0.1, 0.14) is studied using a random resistor network, based on 

phase separation between ferromagnetic (FM) and paramagnetic (PM) domains. By considering the ir-

regular shape of the domains, a revised method, which is used to find the shortest paths across the sample, 

leads to a good agreement between the simulated results and experiment data. Moreover, it is found that 

FM components increase with Te doping, leading to a reduction of the resistivity and a shift of the transi-

tion temperature. This method is proved to be valid and the phase separation scenario is shown theoreti-

cally to be good enough in describing the electrical conductivity of the doped manganese perovskites. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1    Introduction 

Considerable work is currently being focused on the study of doped manganese perovskites [1, 2]. These 

materials have unexplained transport properties. They are insulators at room temperature, changing into 

conductors at low temperature. A sharp peak in the resistivity ρ appears at the ferromagnetic (FM)-

paramagnetic (PM) transition. The transition temperature is denoted TMI. The phase separation phenome-

non has been observed in many doped manganese perovskites, such as La1–xCa
x
MnO3 [3], 

(La,Pr,Ca)MnO3 [4], and La1–xTe
x
MnO3 [5]. 

 In the present paper, we present a new calculation method to simulate the relation between ρ and tem-

perature T of La1–xTe
x
MnO3 by introducing the breadth-first traversal (BFT) algorithm based on the 

phase-separated framework and the random resistor network model. This method can give good results 

with much less calculation effort so that it is much more convenient than the traditional method of solv-

ing the Kirchhoff equations for the resistor network, as reported in the early literature [6–8]. 

2    Model and method 

The main concept in the random resistor network model is summarized in Fig. 1. We assume the sample 

to be mixed by FM and PM domains, which are regarded as squares. The FM and PM squares have me-

tallic and insulating properties, respectively (Fig. 1a). Each FM or PM square is assumed to have a resis-

tance of rm or ri and then the sample can be considered as a network of resistors. In our network, there are 

connected insulating or metallic paths across the sample. The resistance of the whole insulating (Ri) or 
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metallic (Rm) regions is assumed to be proportional to the length of the shortest insulating or metallic 

path. The total resistance of the sample Reff can be characterized by a simple two parallel resistances 

description (Fig. 1b). As the temperature varies, the fraction of the insulating or metallic regions 

changes, and then the relation between Reff and T is obtained. 

 Breadth-first search [9] is a traversal through a graph that touches all of the nodes reachable from a 

particular source node. A BFT visits nodes that are closer to the source before visiting nodes that are 

further away. The distance is defined as the number of edges in the shortest path from the source node. 

This algorithm, which explores all nodes adjacent to the current node before moving on, can be used to 

compute the shortest path from the source to all reachable nodes and the shortest-path distances. When 

properly implemented, all nodes in a given connected component are explored. Using the BFT algorithm, 

the path lengths of the metallic and insulating domains are found. The resistances Rm and Ri are then 

calculated. Finally, according to the size of the sample and the effective resistance Reff, the effective 

resistivity ρ can be obtained. It is noticeable that this method is much more convenient than the tradi-

tional method of solving the Kirchhoff equations for the resistor network. 

 The resistivities of the metallic (ρm) and insulating (ρi) domains are dependent on temperature. It is 

reasonable to assume that they have the forms 2 4.5

m m0 m1 m2
T Tρ ρ ρ ρ= + +  and 

i i0 0 B
exp ( / )E k Tρ ρ=  [10], 

where ρm0, ρm1, ρm2, and ρi0 are parameters fitted from the experimental data, and E0 denotes the activa-

tion energy. In order to represent the indications of temperature-induced percolation, a temperature-

dependent metallic fraction p(T) is needed. The parameter p must decrease as T increases, and should 

vary rapidly near the Curie temperature TC as does the magnetization [8]. 

3    Experiments and simulation 

We fabricated La1–xTe
x
MnO3 (x = 0.1, 0.14) using pulsed laser deposition (PLD) on (100) SrTiO3 (STO) 

substrates. After deposition, the films were held at 780 °C for 30 min in high-purity oxygen at a pressure 

of 50 Pa, and were then postannealed at 760 °C for 8 h in flowing oxygen in order to improve the oxygen 

content of the thin films. The magnetic measurement was carried out using a superconducting quantum 

interference device magnetometer (MPMS-7) in the temperature range 5–300 K. We then measured the 

resistivities of La0.9Te0.1MnO3 films in zero magnetic fields from 5 to 325 K. 

 In our simulation, the metallic and insulating domains are all assumed to be squares, and a 100 × 100 

matrix is used. To simplify the problem, we first assume that two squares are connected only when they 

have a common edge, that is, we search a path in four directions for each square. Figure 2 shows the 

result of the simulation for La0.9Te0.1MnO3 with TC at 261 K. At low temperature the resistivity of the 

sample is small, as it is at room temperature. A large peak tending toward infinity appears in the inter-

mediate temperature range from 220 to 275 K. We assume that the relation between the fraction of me-

tallic regions and T can be described by a Fermi distribution function, which has a form similar to the 

magnetization–temperature relation. The relation of p–T is also shown by curve a in Fig. 3. At low tem-

perature, there are many metallic paths across the sample for the high fraction of metallic domains, so Rm 

is very small. Reff is mainly determined by Rm because Rm and Ri are parallel connected so that Reff is also 

very small. It is obvious as shown by curve a in Fig. 3  that the fraction of metallic domains decreases 

Fig. 1 a) Schematic of random resistor network model. 

Gray squares represent metallic domains and white ones 

represent insulating domains. b) Two-resistance model for 

doped manganese perovskites. Effective resistance R
eff

 

arises from the parallel connection of metallic R
m
 and 

insulating R
i
 resistances. 

a) b) 
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rapidly from 150 K and is less than 0.6 at 220 K. Thus there are so few metallic paths across the sample 

that Rm increases rapidly and Reff also increases rapidly. So a peak of ρ appears near TC. However, when 

the temperature increases continuously, ρi is smaller than ρm due to the exponential decay of ρi with 

increasing temperature. Therefore Reff is mainly determined by Ri, and Reff decreases again. 

 It is noted that the peak value of the resistivity tends to infinity and does not fit the experimental data. 

In the method to obtain Fig. 2, we only search paths in four adjacent directions for each square in the 

above simulation, that is, we assume that the current cannot flow through two diagonal adjacent squares. 

When the temperature is near TC, the fractions of the insulating and metallic regions are almost same, and 

there is no path of either metallic or insulating regions across the sample, so both Rm and Ri tend to infin-

ity. This is not realistic. In fact, the current can pass when two squares are diagonally adjacent due to 

percolation. It is reasonable to assume that two diagonal adjacent squares are connected as well as two 

exactly adjacent squares, that is, to search paths in eight directions for each square. This improvement 

makes the simulated results fit the experimental data better, as shown in Fig. 4. In our calculation, the 

activation energy E0 is 43 meV, and the simulated ρ–T curve is plotted together with the corresponding 

experimental data (Fig. 4a). It can be seen that the result not only yields the M–I transition at TC, but also 

fits the experimental data well over the whole temperature range studied. 

 The simulated results and experimental data for La0.86Te0.14MnO3 films are shown in Fig. 4b. We find 

that the activation energy E0 is 8.6 meV. It is worth noting that Te doping decreases the activation en-

ergy. The relevant p–T relation is shown as curve b in Fig. 3. By comparing curves a and b in Fig. 3, we 

find that the metallic fraction in La0.86Te0.14MnO3 is larger than that in La0.9Te0.1MnO3. The difference of  

 

 

Fig. 2    Resistivity ρ vs. T, assuming that two 

domains are connected only when they have a 

common edge. A peak tending to infinity appears 

near T
C
. 

Fig. 3    Metallic fraction p vs. T: a) 

La
0.9

Te
0.1

MnO
3
; b) La

0.86
Te

0.14
MnO

3
. 
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p(T) between the two curves increases with temperature, and almost reaches a constant value when the 

temperature is larger than TC. The possible reason is that the amount of free electrons in the sample in-

creases with an increase of Te doping. At low temperature, the majority of electrons are difficult to 

move, so the metallic fraction increases very little. As the temperature increases, more and more elec-

trons can move easily, so the metallic fraction increases obviously. The increase of the metallic fraction 

shifts TMI to a higher temperature and decreases the peak value of the resistivity. 

4    Conclusion 

The BFT algorithm is introduced to describe the transport problem and is found to be a valid algorithm 

from the work presented. We have simulated the temperature dependence of the resistivity in  

La1–xTe
x
MnO3 (x = 0.1, 0.14) based on the random resistor network model. The simulated results give 

quantitative fits to the experimental data over the whole temperature range. The results also indicate that 

the activation energy in La0.86Te0.14MnO3 is lower than that in La0.9Te0.1MnO3 and the metallic fraction in 

La0.86Te0.14MnO3 is larger than that in La0.9Te0.1MnO3. Therefore, the resistivity of the sample is reduced 

and the transition temperature increases as the amount of Te increases. Furthermore, we believe that this 

model is also useful for further simulation work on other perovskite materials. Work to simulate the 

conductivity of doped manganese perovskites in applied magnetic fields is ongoing. 
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Fig. 4    Resistivity ρ vs. T, assuming 

that two domains are connected when 

they have either a common edge or a 

point. The open circles are experimental 

data and the solid curves are the simu-

lated results: a) La
0.9

Te
0.1

MnO
3
; b) 

La
0.86

Te
0.14

MnO
3
. 
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