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A relationship between the temperature and the dielectric strength of a Maxwell–Wagner
(MW) type relaxation was deduced based on the conventional two-layer model for in-
homogeneous systems and under the usual assumptions that the conductivity of each
layer obeys the thermally activated law and the dielectric constant of each layer is rela-
tively temperature independent. The relation shows that the relaxation peak height in

the imaginary part of the complex permittivity for a MW-type relaxation increases with
decreasing temperature and saturates at low enough temperature. This behavior was
well-proved by both numeral and experimental results and therefore could be regarded
as a fingerprint of a MW-type relaxation in most practical cases.
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1. Introduction

Recently, a number of materials were found to show colossal and flat dielectric con-

stants in a broad temperature range around room temperature.1–4 This intriguing

dielectric behavior is very desirable for device implementation and numerous efforts

have been made to understand the underlying physics. However, the explanations

of this stunning behavior are often at odds with each other. Some authors attribute

it to the intrinsic material properties,1,5 whereas others tend to believe an extrinsic,

MW-type origin resulting from spatial inhomogenity,6 contact effect,7 and internal

barrier layer capacitor.8

MW relaxation is an ancient phenomenon, having been discussed extensively

first by Maxwell and later by Wagner in 19th century.9,10 It is the well-known

interfacial polarization caused by inhomogeneity, which usually behaves as a char-

acteristic frequency dispersion kink in the dielectric constant (ε′) accompanied by
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Fig. 1. Equivalent circuit for a two-layer system.

a peak in the corresponding dielectric loss (ε′′). This behavior is similar to that

caused by dipolar relaxation and therefore raises an important question. How can

we confirm a relaxation is a MW-type relaxation, not a dipolar-type relaxation?

To answer this question, a general criterion to identify a MW-type relaxation is

imperative. It is well-known that there are four primary mechanisms of polarization

in materials: electronic polarization, ionic or atomic polarization, dipolar or orienta-

tional polarization, and interfacial polarization. The polarization corresponding to

the last mechanism occurs in the lowest frequency range due to the largest inertial

mass of space charge compared to the other polarizations. When the measuring fre-

quency increases efficiently (usual about 1 MHz), the interfacial polarization cannot

follow the variations of the applied field, then it no longer responds to the field and

has no contribution to the polarization. On the other hand, the relaxation time

of a MW relaxation is widely confirmed to follow perfectly the Arrhenius law. It

could be expected that the relaxation would become much weaker with increasing

temperatures as the relaxation would occur at higher frequencies. In this paper,

we truly found that the MW relaxation can be characterized by a temperature de-

pendence of dielectric strength. Our results indicate that this characteristic could

be considered as a fingerprint of the MW-type relaxation and would be helpful for

understanding dielectric responses in the studies of dielectric materials.

2. Results and Discussion

The heterogeneity associated with different contacts (electrodes, interfaces, and

grain boundaries) can be modeled by a two-layer model as shown in Fig. 1, which

consists of two RC (R = resistance and C = capacitor) circuits in series, one

for the contact and the other for the sample.11 The dielectric properties of the

system can be characterized by the conductivities σi (i = 1, 2) (or resistivities ρi),

permittivities εi (unit-free), and thicknesses di, with the real (dielectric constant)

and imaginary (dielectric loss) parts of the complex permittivity can be written

as12,13:

ε′(ω) = ε∞ +
εs − ε∞

1 + (ωτε)2
, (1)
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Fig. 2. Dielectric constant and loss as a function of temperature calculated by the model in Fig. 1
with frequencies of 1000, 10 000, 100 000, and 1000 000 Hz (from left to right).

ε′′(ω) =
dσ1σ2

ωε0(d1σ2 + d2σ1)
+

(εs − ε∞)ωτε

1 + (ωτε)2
, (2)

with

εs = ε′(ω = 0) =
d(d1ε1/σ2

1 + d2ε2/σ2
2)

(d1/σ1 + d2/σ2)2
, (3)

ε∞ = ε′(ω → ∞) =
d

d1/ε1 + d2/ε2

, (4)

τε =
ε0(ε1d2 + ε2d1)

σ1d2 + σ2d1

, (5)

where d = d1 + d2, ω and ε0 are the angular frequency and the permittivity of

free space, respectively. It can be seen that the MW relaxation exhibits a Debye-

like behavior. For a Debye-like relaxation, three relaxation parameters are most

important:

(i) the relaxation time, τ , which dominates the position of the relaxation peak.

It is well-known that the relaxation peak appears at the temperature where

ωτ = 1, and τ can be described by the Arrhenius relation, the Vogel–Fulcher

relation, or a complicated relaxation-time distribution function.14

(ii) The activation energy, E, which dominates the width of the relaxation peak.

In the case of a pure Debye relaxation, the width of the peak at half-maximum
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is given by ∆(log10 ωτ) = 1.144 in the frequency spectrum and ∆(T−1) =

2.635kB/E (for Arrhrnius relation) in the temperature spectrum.15

(iii) The dielectric relaxation strength, Ω, which dominates the height of the relax-

ation peak, apparently, Ω = (εs − ε∞)/2.

For a certain MW relaxation process, τ and E are defined. Thus, the parameter Ω

should reflect the weakening of a MW relaxation. Actually, since εs and ε∞ depend

strongly on the temperature-dependent quantities σi and εi, thus the dielectric

strength is different as the measuring frequency (temperature) is varied. To deduce

a specific relation between the strength and the temperature, detailed information

about the thermal dependencies of σi and εi is required. It is usually assumed that

the conductivity obeys the thermally activated law, i.e., σi = σi0 exp(−Eic/kBT )

(i = 1, 2. σ0 is the preexponential term and Ec is the activation energy of the

conductivity), while εi (i = 1, 2) is relatively temperature independent. Under these

assumptions, ε∞ = constant, and the dielectric strength is therefore dominated by

εs. In the case of σ1 � σ2 (and vice versa), the term (σ1/σ2)
2 can be neglected, then

one immediately obtains from Eq. (3) the dielectric strength of a MW relaxation,

which can be written as

Ω ∝ εs ∝
(d1/d)ε1

[(d1/d) + (d2/d)(σ1/σ2)]2

∝
(d1/d)ε1

(d1/d)2 + 2(d2d1σ10/d2σ20) exp[−(E1c − E2c)/kBT ]

=
L

M + N exp(−H/kBT )
, (6)

where L = (d1/d)ε1, M = (d1/d)2, N = 2d2d1σ10/d2σ20, and H = E1c − E2c.

In the other case of σ1 ∼ σ2, εs is nearly temperature-independent, which cor-

responds to H ∼ 0 in Eq. (6). Therefore, Eq. (6) gives an expression for the tem-

perature dependence of the dielectric strength in either case. Since L, M , N , and

H are constants (or nearly constants), Eq. (6) indicates that the peak height of a

MW relaxation increases with decreasing temperature and saturates at low enough

temperature.

To test the validity of Eq. (6), a numerical result is shown in Fig. 2 to

simulate the dielectric behaviors of the two-layer system with proper values of

σ10 = 0.341 S cm−1, E1c = 0.24 eV, ε1 = 20, σ20 = 0.196 S cm−1, E2c = 0.54 eV,

ε2 = 10, and d2/d = 0.1. It is seen that ε′(T ) exhibits the typical features of mate-

rials exhibiting colossal dielectric response. That is, with decreasing temperature,

ε′(T ) shows a step-like decrease from a higher dielectric plateau to a lower one,

accompanied by a peak in ε′′(T ) with the peak position shifting to higher temper-

atures as the modeling frequency increases. This peak is caused by the relaxation

term [the second term in Eq. (2)]. At the same time, a nearly exponential increas-

ing background resulting from the conductivity term [the first term in Eq. (2)] is

also distinguishable especially in curves obtained with lower modeling frequencies.
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Fig. 3. Plot of the peak position extracted from Fig. 2 as a function of the reciprocal temperature.
The straight line is the result of a linear fit according to Arrhenius relation; and plot of the peak
height as a function of temperature. The solid line is the least-squares fitting result based on
Eq. (6).

By subtracting the backgrounds, the extracted dielectric peak heights shown as

closed squares in Fig. 3 fall perfectly on the solid line of the fitting result based on

Eq. (6). Besides, the temperature dependence of the peak position (open circles)

follows quite well the Arrhenius law as seen from the figure.

We herein show the comparison between model calculations and experimental

results to further prove the validity of Eq. (6). The key point of the application of

Eq. (6) is the deduction of the background, which is related to the conductivity,

and in most practical cases, exponentially increases with increasing temperature.

Figure 4 illustrates an experimental sample from the results we have,16 in which

the MW relaxation is caused by the surface-layer effect in CaCu3Ti4O12. By sub-

tracting the backgrounds, a notable decay of the net relaxation peaks with increas-

ing temperature can be clearly seen. The peak heights (closed squares) are satisfac-

torily described by the decreasing line obtained from the least-squares fitting based

on Eq. (6).

Figure 5 presents the experimental sample from Refs. 17 and 18, therein MW

relaxations were reported in Bi2/3Cu3Ti4O12 and (1−x)SrTiO3−xSrMg1/3Nb2/3O3

with x = 0.03, respectively. Again excellent agreement can be seen between the

experimental data (open and closed squares) and the calculated results (solid lines).

It is worth noting that the loss tangent, tan δ (tan δ = ε′′/ε′), is usually used

to express the dielectric dissipation. A pertinent question is whether the deduced

relation also holds in the case of loss tangent. In this case, the relaxation term is

given by (εs − ε∞)ωτδ/[
√

εsε∞(1 + (ωτδ)
2)], where τδ =

√

ε∞/εsτε. It takes the
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Fig. 4. Comparison of the extracted relaxation peaks from CaCu3Ti4O12 (Ref. 16) with the
measuring frequencies of 100, 120, 1000, and 10 000 Hz (from left to right); and the temperature
dependence of the peak height. The closed squares are experimental results, while the solid line
is the least-squares fitting result based on Eq. (6).

Fig. 5. The temperature dependence of the peak height obtained from Refs. 17 and 18 (x = 0.03).
The open and closed squares are experimental results, the solid lines are the least-squares fitting
results based on Eq. (6).

same form as that of ε′′(ω). Hence, tan δ registers a peak at ωτδ = 1 with the

maximum value Ωδ = (εs − ε∞)/2
√

εsε∞. Conventionally, εs � ε∞, this allows us

to rewrite the peak height of tan δ as

Ωδ ∝
√

εs . (7)
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Fig. 6. Temperature dependence of tan δ for TbMnO3 ceramics (open symbols) measured at
100 kHz. The solid curve through the data points is the least-squares fitting result. The dashed
curves are the resultant fitting peaks and background. The left inset shows the comparison of the
extracted high-temperature relaxation peaks with the measuring frequencies of 100, 120, 1000,
and 10 000 Hz (from left to right). The right inset displays the temperature dependence of the
peak height. The solid line is the least-squares fitting result based on Eq. (6).

By substituting Eq. (6) into Eq. (7) and on condition that (N/M) exp(−H/kBT ) �
1, Eq. (7) can be simplified to the same form as Eq. (6) by neglecting the second

and higher-order terms. This fact indicates that the peak height of tan δ in certain

cases varies with temperature in the same manner as ε′′(T ) does. A justifying exam-

ination was performed on TbMnO3 ceramics. The sample possessing two dielectric

relaxations with the high-temperature relaxation was clarified to be a MW-type

relaxation originating from the internal barrier layer capacitor effect.19 The value

of (N/M) exp(−E/kBT ) in this sample was found to be 0.00411 at 200 K, which

perfectly meets the above condition. Figure 6 plots the experimental data (open

circles) at 100 kHz and the fitting result (solid line). The resultant fitting peaks

and background were indicated by dashed lines. The extracted high-temperature

relaxation peaks at different measuring frequencies were pictured in the left in-

set for comparison. It is clearly seen that the peak height decreases distinctly as

the peak position shifts to higher temperatures with increasing frequencies. The

temperature-dependent peak height of tan δ can be accurately described by Eq. (6)

as clearly evidenced in the right inset of the figure. However, the peak height of

tan δ in most cases is more complicated than that of ε′′ and a simple explicit rela-

tion between the temperature and the peak height as described by Eq. (6) cannot

be achieved.

Finally, it is worth stressing that, although both dipolar relaxation and MW

relaxation follow the similar relaxation equations as described by Eqs. (1) and (2),
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their T -dependent relaxation strengths are quite different. In the case of free dipolar

system, i.e., the dipoles are considered without any interaction, the reorientation

dipolar polarization under an applied electric field is expressed by a Langevin func-

tion and the T -dependent relaxation strength takes the form ΩD ∝ ε′(ω = 0) ∝ 1/T .

In the case of dipolar relaxation associated with hopping localized change carriers,

the static dielectric constant is proportional to the thermally activated carriers.20

One has the relation ΩC ∝ exp(−A/kBT ), where A is the activation energy. Thus,

analysis of the relationship between Ω and T does distinguish the two types of

relaxation. This suggests that the temperature-dependent dielectric strength, i.e.,

Eq. (6), might be considered as a criterion of the MW-type relaxation in most

practical cases.

3. Conclusion

In conclusion, under the usual assumptions that the conductivity of each layer

follows the thermally-activated behavior and the dielectric constant of each layer is

nearly temperature-independent, we show that the MW relaxation of a two-layer

system can be characterized by a simple explicit relation between the temperature

and the peak height of. This relation works well in describing the experimental data

and in these cases, the T -dependent dielectric strength could be taken as a criterion

for a MW mechanism.
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